4.7 Article

Synthesis and characterization of novel poly[(organo)phosphazenes] with cell-adhesive side groups

Journal

BIOMACROMOLECULES
Volume 8, Issue 5, Pages 1436-1445

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm060926k

Keywords

-

Ask authors/readers for more resources

There is a need to develop new scaffold materials with controlled surface properties for tissue engineering applications. For that purpose novel biodegradable poly[(organo)phosphazenes] were synthesized. A cell-binding molecule, galactose, was introduced via a spacer, either 6-aminohexanol (AH) or poly(ethylene glycol) (PEG; M-w = 3400). Some polymers were substituted with an additional PEG chain of different molecular weights (M-w = 750 or 5000). The polyphosphazene derivatives were characterized by H-1 NMR. T-g and T-m were determined using differential scanning calorimetry. A detailed surface analysis of the polymers using X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and dynamic contact angle (DCA) measurements was performed. Typical backbone and side chain fragments were detected by SIMS and confirmed the polymer composition. Compared to that of the reference polymer (having only amino acid ester side groups), an increased value of the specific ether carbon groups from PEG confirmed the enrichment of PEG at the surface of PEG-Gal polymers. However, the values were lower than expected. DCA studies showed that the galactose moieties were present at the surface after exposure to an aqueous environment. XPS results confirmed the similarity between experimental and theoretical values for the AH-Gal polymers. This indicated the presence of galactose moieties at the surface, which was confirmed by the DCA data because the contact angles were low compared to those of the other polymers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available