4.7 Article

Kinetics of viral self-assembly: Role of the single-stranded RNA antenna

Journal

PHYSICAL REVIEW E
Volume 75, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.75.051901

Keywords

-

Ask authors/readers for more resources

Many viruses self-assemble from a large number of identical capsid proteins with long flexible N-terminal tails and single-stranded (ss) RNA. We study the role of the strong Coulomb interaction of positive N-terminal tails with ssRNA in the kinetics of in vitro virus self-assembly. Capsid proteins stick to the unassembled chain of ssRNA (which we call an antenna) and slide on it toward the assembly site. We show that at excess of capsid proteins such one-dimensional diffusion accelerates self-assembly more than ten times. On the other hand at excess of ssRNA, the antenna slows self-assembly down. Several experiments are proposed to verify the role of the ssRNA antenna.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available