4.4 Article

Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer:: Results of a prospective phase I trial

Journal

INTERNATIONAL JOURNAL OF HYPERTHERMIA
Volume 23, Issue 3, Pages 315-323

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/02656730601175479

Keywords

magnetic; nanoparticles; prostate cancer; recurrence; thermotherapy

Ask authors/readers for more resources

Purpose: To investigate the treatment-related morbidity and quality of life (QoL) during thermotherapy using superparamagnetic nanoparticles in patients with locally recurrent prostate cancer. Materials and Methods: Ten patients with biopsy-proven locally recurrent prostate cancer following primary therapy with curative intent and no detectable metastases were entered on a prospective phase I trial. Endpoints were feasibility, toxicity and QoL. Following intraprostatic injection of a nanoparticle dispersion, six thermal therapy sessions of 60min duration were delivered at weekly intervals using an alternating magnetic field. National Cancer Institute (NCI) common toxicity criteria (CTC) and the European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30 and QLQ-PR25 questionnaires were used to evaluate toxicity and QoL, respectively. In addition, prostate specific antigen (PSA) measurements were carried out. Results: Maximum temperatures up to 55 degrees C were achieved in the prostates at 25-30% of the available magnetic field strength. Nanoparticle deposits were detectable in the prostates one year after thermal therapy. At a median follow-up of 17.5 months (3-24), no systemic toxicity was observed. Acute urinary retention occurred in four patients with previous history of urethral stricture. Treatment-related morbidity was moderate and QoL was only temporarily impaired. Prostate-specific antigen (PSA) declines were observed in eight patients. Conclusions: Interstitial heating using magnetic nanoparticles- was feasible and well tolerated in patients with locally recurrent prostate cancer. Deposition of nanoparticles in the prostate was highly durable. Further refinement of the technique is necessary to allow application of higher magnetic field strengths.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available