4.5 Article

An applicable electrospinning process for fabricating a mechanically improved nanofiber mat

Journal

POLYMER ENGINEERING AND SCIENCE
Volume 47, Issue 5, Pages 707-712

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/pen.20744

Keywords

-

Ask authors/readers for more resources

Engineered polymer scaffolds play an important role in tissue engineering. An ideal scaffold should have good mechanical properties and provide a biologically functional implant site. Considering their large surface area and high porosity, nanofibers have good potential as biomimetic scaffolds. However, the main shortcomings of scaffolds consisting of nanofibers are their mechanical inability to sustain a stress environment for neotissues and shape-ability to form a variety of shapes and sizes. In this study, we produced design-based poly (epsilon-carprolactone) (PCL) nanofiber mats using an electrospinning method with various auxiliary electrodes and an x-y moving system. To achieve stable initial solution at a nozzle tip of the electrospinning, various types of auxiliary electrodes were introduced. To characterize the effect of the electrodes in the electric-field distribution near the nozzle tip, we calculated the electric field concentration factor and compared it with the experimental results. The nanofiber mat produced using the moving x-y target system demonstrated orthotropic mechanical properties due to the fiber orientation, and human dermal fibroblasts seeded on the structure tended to grow according to nanofiber orientation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available