4.5 Article

A mechanical spike accompanies the action potential in mammalian nerve terminals

Journal

BIOPHYSICAL JOURNAL
Volume 92, Issue 9, Pages 3122-3129

Publisher

CELL PRESS
DOI: 10.1529/biophysj.106.103754

Keywords

-

Categories

Funding

  1. NINDS NIH HHS [NS40966, R01 NS040966] Funding Source: Medline

Ask authors/readers for more resources

Large and rapid changes in light scattering accompany secretion from nerve terminals of the mammalian neurohypophysis (posterior pituitary). In the mouse, these intrinsic optical signals are intimately related to the arrival of the action potential E-wave and the release of arginine vasopressin and oxytocin (S-wave). Here we have used a high bandwidth atomic force microscope to demonstrate that these light-scattering signals are associated with changes in terminal volume that are detected as nanometer-scale movements of a cantilever positioned on top of the neurohypophysis. The most rapid mechanical response (spike''), having a duration shorter than the action potential but comparable to that of the E-wave, represents a transient increase in terminal volume due to water movement associated with Na+-influx. The slower mechanical event (dip''), on the other hand, depends upon Ca2+-entry as well as on intraterminal Ca2+-transients and, analogously to the S-wave, seems to monitor events associated with secretion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available