4.5 Review

Functional genomics and proteomics of the cellular osmotic stress response in 'non-model' organisms

Journal

JOURNAL OF EXPERIMENTAL BIOLOGY
Volume 210, Issue 9, Pages 1593-1601

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.000141

Keywords

salinity adaptation; osmotic stress; systems biology; euryhaline fish; proteomics

Categories

Funding

  1. NIEHS NIH HHS [5 P42 ES004699] Funding Source: Medline

Ask authors/readers for more resources

All organisms are adapted to well-defined extracellular salinity ranges. Osmoregulatory mechanisms spanning all levels of biological organization, from molecules to behavior, are central to salinity adaptation. Functional genomics and proteomics approaches represent powerful tools for gaining insight into the molecular basis of salinity adaptation and euryhalinity in animals. In this review, we discuss our experience in applying such tools to so-called `non-model' species, including euryhaline animals that are well-suited for studies of salinity adaptation. Suppression subtractive hybridization, RACE-PCR and mass spectrometry-driven proteomics can be used to identify genes and proteins involved in salinity adaptation or other environmental stress responses in tilapia, sharks and sponges. For protein identification in non-model species, algorithms based on sequence homology searches such as MSBLASTP2 are most powerful. Subsequent gene ontology and pathway analysis can then utilize sets of identified genes and proteins for modeling molecular mechanisms of environmental adaptation. Current limitations for proteomics in non- model species can be overcome by improving sequence coverage, N- and C-terminal sequencing and analysis of intact proteins. Dependence on information about biochemical pathways and gene ontology databases for model species represents a more severe barrier for work with non-model species. To minimize such dependence, focusing on a single biological process (rather than attempting to describe the system as a whole) is key when applying `omics' approaches to non-model organisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available