4.4 Article

Short-term hyperhomocysteinemia-induced oxidative stress activates retinal glial cells and increases vascular endothelial growth factor expression in rat retina

Journal

BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY
Volume 71, Issue 5, Pages 1203-1210

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1271/bbb.60657

Keywords

hyperhomocysteinemia; retina; vimentin; glial fibrillary acidic protein; vascular endothelial growth factor

Ask authors/readers for more resources

Hyperhomocysteinemia is associated with an increase in the incidence of vascular diseases, including retinal vascular diseases. We examined the effects of high plasma levels of homocysteine on retinal glial cells and vascular endothelial growth factor (VEGF) expression. Male Sprague-Dawley rats were fed either a 3.0g/kg homocystine diet or a control diet for 2 week. The homocystine-diet group had higher plasma levels of homocysteine and thiobarbituric acid reactive substances (TBARSs) and lower plasma levels of folate, retinol, alpha-tocopherol, and retinal expression of CuZn superoxide dismutase (SOD) than the controls. The rats fed the homocystine-diet showed an increase in vimentin, glial fibrillary acidic protein (GFAP), and VEGF immunoreactivity in the retina as compared to the controls. The increase in vimentin immunoreactivity in the hyperhomocysteinemic rats was correlated with changes in GFAP immunoreactivity in astrocytes within the ganglion cell layer. We found for the first time that short-term hyperhomocysteinemia-induced oxidative stress activates retinal glial cells and increases VEGF expression in the retina.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available