4.5 Article

Dual-targeting non-viral vector based on polyethylenimine improves gene transfer efficiency

Journal

JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
Volume 18, Issue 5, Pages 545-560

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1163/156856207780852532

Keywords

polyethylenimine; FGF receptors; integrins; targeting; gene transfer

Ask authors/readers for more resources

Polyethylenimine (PEI) is the polymer most commonly used for transferring plasmids into eukaryotes, but its gene-transfer efficiency is lower compared to viral vectors. Receptors targeting PEI combined with ligands can enhance efficiency of gene transfer into the corresponding receptor-positive cells. Using the double-receptor-mediated pathway of viral infection, in this study we synthesized a novel non-viral vector based on PEI combined with two peptides recognizing FGF receptors (peptide YC25) and integrins (peptide CP9) on the cell surface. The dual targeting vector showed a physicochemical character similar to that of PEI, such as pDNA formation, particle size, zeta potential and lower toxicity. In vitro gene transfer showed that the dual-receptor targeted vector (YC25-PEI-CP9) exhibited a markedly higher transgene efficiency in cell lines with positive expression of FGF receptors and integrins, compared with single-peptide-modified PEI or unmodified PEI. In the cells with only integrin-positive expression, YC25-PEI-CP9 mediated a higher transgene expression than PEI but lower than CP9-PEI. The corresponding free peptides could inhibit the transgene efficiency of the peptide-coupled PEI. In vivo gene transfer in tumor-bearing nude mice also demonstrated that the dual-targeting vectors showed a significantly enhanced transfection efficiency in tumors with positive expression of FGF receptors and integrins. The synthesized polymer YC25-PEI-CP9 has the prospect to act as a novel kind of non-viral vector in gene therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available