4.7 Article

Reduction method for concept lattices based on rough set theory and its application

Journal

COMPUTERS & MATHEMATICS WITH APPLICATIONS
Volume 53, Issue 9, Pages 1390-1410

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.camwa.2006.03.040

Keywords

formal context; concept lattice; rough set; attribute reduction; object reduction; scheduling

Ask authors/readers for more resources

Rough set theory and formal concept analysis are two complementary mathematical tools for data analysis. In this paper, we study the reduction of the concept lattices based on rough set theory and propose two kinds of reduction methods for the above concept lattices. First, we present the sufficient and necessary conditions for justifying whether an attribute and an object are dispensable or indispensable in the above concept lattices. Based on the above justifying conditions, we propose a kind of multi-step attribute reduction method and object reduction method for the concept lattices, respectively. Then, on the basis of the defined discernibility functions of the concept lattices, we propose a kind of single-step reduction method for the concept lattices. Additionally, the relations between the attribute reduction of the concept lattices in FCA and the attribute reduction of the information system in rough set theory are discussed in detail. At last, we apply the above multi-step attribute reduction method for the concept lattices based on rough set theory to the reduction of the redundant premises of the multiple rules used in the job shop scheduling problem. The numerical computational results show that the reduction method for the concept lattices is effective in the reduction of the multiple rules. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available