4.4 Article

Grape seed proanthocyanidin extracts inhibit vascular cell adhesion molecule expression induced by advanced glycation end products through activation of peroxisome proliferators-activated receptor γ

Journal

JOURNAL OF CARDIOVASCULAR PHARMACOLOGY
Volume 49, Issue 5, Pages 293-298

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/FJC.0b013e31803c5616

Keywords

proanthocyanidin; glycation; receptor; endothelial cells; peroxisome proliferators-activated receptor gamma

Ask authors/readers for more resources

Although evidence has shown that grape seed proanthocyanidin extracts (GSPE) can selectively inhibit cell adhesion molecule expression induced by advanced glycation end products (AGEs), the underlying molecular mechanism has not been extensively characterized. To study the antiinflammation mechanism of GSPE, we investigated the effect of GSPE on Von Willebrand factor (vWF) content and the expression of vascular cell adhesion molecule-1 (VCAM-1) induced by AGEs and the effect of GSPE on peroxisome proliferators-activated receptor gamma (PPAR gamma) and receptor for AGEs (RAGE) expression in human umbilical vein endothelial cells (HUVEC). HUVEC were preincubated with or without GSPE of different concentrations (10 mg/L, 50 mg/L, and 100 mg/L) for 4 hours before being treated with 200 mg/L AGEs or unmodified bovine serum albumin (BSA) for 24 hours. The expression of RAGE and PPAR gamma was investigated by Western blot. VCAM-1 expression was measured by flow cytometry and vWF content by enzyme-linked immunosorbent assay (ELISA). Results showed that GSPE significantly inhibited the expression of VCAM-1 in HUVEC and reduced the content of vWF in culture fluid induced by AGEs in a dose-dependent manner. AGEs activated the expression of RAGE and inhibited PPAR gamma expression in NUVEC, whereas GSPE inhibited the expression of RAGE through activation of PPAR gamma in HUVEC simultaneously. These findings indicated that GSPE inhibited the cell inflammatory factor expression and protected the function of endothelial cell through activation of PPAR gamma expression and inhibition of RAGE expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available