4.7 Article

Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast

Journal

PLANT BIOTECHNOLOGY JOURNAL
Volume 5, Issue 3, Pages 402-412

Publisher

BLACKWELL PUBLISHING
DOI: 10.1111/j.1467-7652.2007.00249.x

Keywords

chloroplast genetic engineering; orally available biologics; protein therapeutics; recombinant protein expression in algae

Funding

  1. NIGMS NIH HHS [R01 GM054659-07, R01 GM054659] Funding Source: Medline
  2. PHS HHS [A1059614] Funding Source: Medline

Ask authors/readers for more resources

We have engineered the chloroplast of eukaryotic algae to produce a number of recombinant proteins, including human monoclonal antibodies, but, to date, have achieved expression to only 0.5% of total protein. Here, we show that, by engineering the mammalian coding region of bovine mammary-associated serum amyloid (M-SAA) as a direct replacement for the chloroplast psbA coding region, we can achieve expression of recombinant protein above 5% of total protein. Chloroplast-expressed M-SAA accumulates predominantly as a soluble protein, contains the correct amino terminal sequence and has little or no post-translational modification. M-SAA is found in mammalian colostrum and stimulates the production of mucin in the gut, acting in the prophylaxis of bacterial and viral infections. Chloroplast-expressed and purified M-SAA is able to stimulate mucin production in human gut epithelial cell lines. As Chlamydomonas reinhardtii is an edible alga, production of therapeutic proteins in this organism offers the potential for oral delivery of gut-active proteins, such as M-SAA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available