4.8 Review

Biology of incretins: GLP-1 and GIP

Journal

GASTROENTEROLOGY
Volume 132, Issue 6, Pages 2131-2157

Publisher

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1053/j.gastro.2007.03.054

Keywords

-

Ask authors/readers for more resources

This review focuses on the mechanisms regulating the synthesis, secretion, biological actions, and therapeutic relevance of the incretin peptides glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). The published literature was reviewed, with emphasis on recent advances in our understanding of the biology of GIP and GLP-1. GIP and GLP-1 are both secreted within minutes of nutrient ingestion and facilitate the rapid disposal of ingested nutrients. Both peptides share common actions on islet beta-cells acting through structurally distinct yet related receptors. Incretin-receptor activation leads to glucose-dependent insulin secretion, induction of beta-cell proliferation, and enhanced resistance to apoptosis. GIP also promotes energy storage via direct actions on adipose tissue, and enhances bone formation via stimulation of osteoblast proliferation and inhibition of apoptosis. in contrast, GLP-1 exerts glucoregulatory actions via slowing of gastric emptying and glucose-dependent inhibition of glucagon secretion. GLP-1 also promotes satiety and sustained GLP-1-receptor activation is associated with weight loss in both preclinical and clinical studies. The rapid degradation of both GIP and GLP-1 by the enzyme dipeptidyl peptidase-4 has led to the development of degradation-resistant GLP1-receptor agonists and dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes. These agents decrease hemoglobin A1c (HbA1c) safely without weight gain in subjects with type 2 diabetes. GLP-1 and GIP integrate nutrient-derived signals to control food intake, energy absorption, and assimilation. Recently approved therapeutic agents based on potentiation of incretin action provide new physiologically based approaches for the treatment of type 2 diabetes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available