4.6 Article

Temperature-dependent expression of Listeria monocytogenes internalin and internalin-like genes suggests functional diversity of these proteins among the listeriae

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 73, Issue 9, Pages 2806-2814

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.02923-06

Keywords

-

Funding

  1. NIAID NIH HHS [R01 AI052151, R01-AI052151-01A1] Funding Source: Medline

Ask authors/readers for more resources

The Listeria monocytogenes genome contains genes encoding several internalins and internalin-like proteins. As L. monocytogenes is present in many environments and can infect numerous, diverse host species, the environmental temperature was hypothesized to be a signal that might affect internalin gene transcription. A subgenomic microarray was used to investigate temperature-dependent transcription of 24 members of the internalin gene family in L. monocytogenes 10403S. The levels of internalin gene transcripts for cells grown at 37 degrees C were compared to the levels of transcripts for cells grown at 16,30, and 42 degrees C using competitive microarray hybridization, and the results were confirmed by performing quantitative reverse transcriptase PCR for 14 internalin genes. Based on these studies, the internalin genes can be grouped into the following five temperature-dependent categories: (i) four sigma(B)-dependent internalin genes (inlC2, inlD, lmo0331, and lmo0610) with the highest levels of transcripts at 16 degrees C and generally the lowest levels of transcripts at 37 degrees C; (ii) three partially PrfA-dependent internalin genes (inlA, inlB, and inlC) with the lowest levels of transcripts at 16 degrees C and the highest levels of transcripts at 37 and 42 degrees C; (iii) four genes (inlG, inlJ, lmo0514, and lmo1290) with the lowest levels of transcripts at 16 degrees C and the highest levels of transcripts at 30 and/or 37 degrees C; (iv) one gene (lmo0327) with the highest levels of transcripts at 16 degrees C and low levels of transcripts at higher temperatures; and (v) 12 internalin genes with no differences in the levels of transcripts at the temperatures used in this study. The temperature-dependent transcription patterns suggest that the relative importance of different internalins varies by environment, which may provide insight into the specific functions of these proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available