4.6 Article

Differences in Production of Reactive Oxygen Species and Mitochondrial Uncoupling as Events in the Preconditioning Signaling Cascade Between Desflurane and Sevoflurane

Journal

ANESTHESIA AND ANALGESIA
Volume 109, Issue 2, Pages 405-411

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1213/ane.0b013e3181a93ad9

Keywords

-

Categories

Funding

  1. National Institutes of Health, Bethesda, Maryland [P01GM066730, R01HL034708]

Ask authors/readers for more resources

BACKGROUND: Signal transduction cascade of anesthetic-induced preconditioning has been extensively studied, yet many aspects of it remain unsolved. Here, we investigated the roles of reactive oxygen species (ROS) and mitochondrial uncoupling in cardiomyocyte preconditioning by two modern volatile anesthetics: desflurane and sevoflurane. METHODS: Adult rat ventricular cardiomyocytes were isolated enzymatically. The preconditioning potency of desflurane and sevoflurane was assessed in cell survival experiments by evaluating myocyte protection from the oxidative stress-induced cell death. ROS production and flavoprotein fluorescence, an indicator of flavoprotein oxidation and mitochondrial uncoupling, were monitored in real time by confocal microscopy. The functional aspect of enhanced ROS generation by the anesthetics was assessed in cell survival and confocal experiments using the ROS scavenger Trolox. RESULTS: Preconditioning of cardiomyocytes with desflurane or sevoflurane significantly decreased oxidative stress-induced cell death. That effect coincided with increased ROS production and increased flavoprotein oxidation detected during acute myocyte exposure to the anesthetics. Desflurane induced significantly greater ROS production and flavoprotein oxidation than sevoflurane. ROS scavenging with Trolox abrogated preconditioning potency of anesthetics and attenuated flavoprotein oxidation. CONCLUSION: Preconditioning with desflurane or sevoflurane protects isolated rat cardiomyocytes from oxidative stress-induced cell death. Scavenging of ROS abolishes the preconditioning effect of both anesthetics and attenuates anesthetic-induced mitochondrial uncoupling, suggesting a crucial role for ROS in anesthetic-induced preconditioning and implying that ROS act upstream of mitochondrial uncoupling. Desflurane exhibits greater effect on stimulation of ROS production and mitochondrial uncoupling than sevoflurane. (Anesth Analg 2009:109:405-11)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available