4.8 Article

Sequence specificity of single-stranded DNA-binding proteins: a novel DNA microarray approach

Journal

NUCLEIC ACIDS RESEARCH
Volume 35, Issue 10, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkm040

Keywords

-

Ask authors/readers for more resources

We have developed a novel DNA microarray-based approach for identification of the sequence-specificity of single-stranded nucleic-acid-binding proteins (SNABPs). For verification, we have shown that the major cold shock protein (CspB) from Bacillus subtilis binds with high affinity to pyrimidine-rich sequences, with a binding preference for the consensus sequence, 5'-GTCTTTG/T-3'. The sequence was modelled onto the known structure of CspB and a cytosine-binding pocket was identified, which explains the strong preference for a cytosine base at position 3. This microarray method offers a rapid high-throughput approach for determining the specificity and strength of ss DNA-protein interactions. Further screening of this newly emerging family of transcription factors will help provide an insight into their cellular function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available