4.7 Article

MR imaging of the cervical spine: assessment of image quality with parallel imaging compared to non-accelerated MR measurements

Journal

EUROPEAN RADIOLOGY
Volume 17, Issue 5, Pages 1147-1155

Publisher

SPRINGER
DOI: 10.1007/s00330-006-0411-2

Keywords

GRAPPA; examination time; MRI; parallel imaging; spine

Ask authors/readers for more resources

To compare the quality of cervical spine MR images obtained by parallel imaging [generalized autocalibrating partially parallel acquisition (GRAPPA)] with those of non-accelerated imaging, we conducted both phantom studies and examinations of ten volunteers at 1.5Tesla with a dedicated 12-element coil system and a head-spine-neck coil combination. Acquisitions included axial T2-weighted (T2w) images with both methods, and sagittal T2w and T1w images in vivo with the latter coil combination. Non-accelerated MRI with two averages and GRAPPA (acceleration factor 2) with two averages (GRAPPA/2AV, time reduction of approximately 50%) and four averages (GRAPPA/4AV) were compared. In the phantom, the signal-to-noise ratio of the GRAPPA/2AV was lower than that of the other two settings. In vivo, the image inhomogeneity (non-uniformity, NU) was significantly higher in T2w GRAPPA/2AV than in both other settings, and in T1w GRAPPA/2AV compared to GRAPPA/4AV. Subjectively, the delineation of anatomical structures was sufficient in all sequences. Only the spinal cord was considered to be better delineable on the non-accelerated T1w sequence compared to GRAPPA/2AV. In part, GRAPPA/4AV performed better than the other settings. The subjective image noise was lowest with GRAPPA/4AV. In cervical spine MRI, the examination time can be reduced by nearly 42% with GRAPPA, while preserving sufficient image quality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available