4.6 Article

Xenon Induces Late Cardiac Preconditioning In Vivo: A Role for Cyclooxygenase 2?

Journal

ANESTHESIA AND ANALGESIA
Volume 107, Issue 6, Pages 1807-1813

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1213/ane.Ob013e31818874bf

Keywords

-

Categories

Funding

  1. European Society of Anesthesiology (Brussels, Belgium)
  2. University Hospital of Dusseldorf, Dusseldorf, Germany
  3. Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Ask authors/readers for more resources

BACKGROUND: Xenon induces early myocardial preconditioning of the rat heart in vivo, but whether xenon induces late cardioprotection is not known. Cyclooxygenase-2 (COX-2) has been shown to be an important mediator in the signal transduction of myocardial ischemic late preconditioning (i-LPC). We investigated whether xenon induces late preconditioning (Xe-LPC) and whether COX-2 activity and/or expression are involved in mediating this effect. METHODS: Anesthetized male Wistar rats were instrumented with a coronary artery occluder. After 7 d of recovery, animals were randomized to 1 of 5 groups each containing 8 animals. The i-LPC group underwent 5 min of coronary occlusion to induce i-LPC. Xe-LPC was achieved by administration of xenon (70 volume%) for 15 min. Additional rats were pretreated with the COX-2 inhibitor NS-398 (5 mg kg(-1) body weight i.p.) with and without Xe-LPC. A group of sham operated animals not undergoing i-LPC or Xe-LPC served as controls (Con). After 24 h, all animals were anesthetized and underwent 25 min of myocardial ischemia induced by tightening of the coronary artery occluder followed by 2 h of reperfusion. Myocardial infarct size was assessed by triphenyltetrazolium chloride staining. In additional experiments, hearts were excised at different time points after precon ditioning to investigate COX-2 mRNA and protein expression by polymerase chain reaction and infrared Western blot, respectively. RESULTS: Both i-LPC and Xe-LPC reduced myocardial infarct size (% of the area at risk) compared with Con (i-LPC: 29 +/- 7%; Xe-LPC 31 +/- 8%, both P < 0.05 vs Con 64 +/- 6%). NS-398 abolished the cardioprotective effect of Xe-LPC (61+/- 6%, P < 0.05 vs Xe-LPC). COX-2 mRNA and protein expression was only increased in the i-LPC group, but not in the Xe-LPC group. CONCLUSION: Xenon induces late myocardial preconditioning that is abolished by functional blockade of COX-2 activity. In contrast to i-LPC, Xe-LPC did not lead to an increased expression of COX-2 mRNA and protein. These data suggest differences in COX-2 regulation in i-LPC and Xe-LPC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available