4.5 Article

Age-related factors affecting the postyield energy dissipation of human cortical bone

Journal

JOURNAL OF ORTHOPAEDIC RESEARCH
Volume 25, Issue 5, Pages 646-655

Publisher

WILEY
DOI: 10.1002/jor.20337

Keywords

bone; porosity; collagen; pentosidine; toughness

Categories

Funding

  1. NIA NIH HHS [R01 AG022044, 1 R01 AG022044-01, R01 AG022044-02] Funding Source: Medline

Ask authors/readers for more resources

The risk of bone fracture depends in part on tissue quality, not just the size and mass. This study assessed the postyield energy dissipation of cortical bone in tension as a function of age and composition. Specimens were prepared from tibiae of human cadavers in which male and female donors were divided into two age groups: middle aged (51 to 56 years, n = 9) and elderly (72 to 90 years, n = 8). By loading, unloading, and reloading a specimen with rest periods inserted in between, tensile properties at incremental strain levels were assessed. In addition, postyield toughness was estimated and partitioned as plastic strain energy related to permanent deformation, released elastic strain energy related to stiffness loss, and hysteresis energy related to viscous behavior. Porosity, mineral and collagen content, and collagen crosslinks of each specimen were also measured to determine the micro- and ultrastructural properties of the tissue. Age affected all the energy terms plus strength but not elastic stiffness. The postyield energy terms were correlated with porosity, pentosidine (a marker of nonenzymatic crosslinks), and collagen content, all of which varied significantly with age. General linear models suggested that pentosidine concentration and collagen content provided the best explanation of the age-related decrease in the postyield energy dissipation. Among them, pentosidine concentration had the greatest contribution to plastic strain energy and was the best explanatory variable of damage accumulation. (c) 2007 Orthopaedic Research Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available