4.7 Article

Tillage and fertility management effects on soil organic matter and sorghum yield in semi-arid West Africa

Journal

SOIL & TILLAGE RESEARCH
Volume 94, Issue 1, Pages 64-74

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.still.2006.07.001

Keywords

crop performance; fertiliser; organic amendments; soil carbon; tillage

Categories

Ask authors/readers for more resources

Whether it is traditional, modern or sustainable agriculture, soil organic matter plays a key role in sustaining crop production and in preventing land degradation. A field experiment was conducted on a Ferric Lixisol at Gampela (Burkina Faso) in 2000 and 2001 to carried out the effects of tillage, fertilisation and their interaction on soil organic carbon (SOC) (0-10 cm), crop performance and microbial activities. Maize straw or sheep dung were applied separately or combined with urea in a till or no-till systems and compared with urea only and a control treatment. Sampling was done each year at 2 months after sowing and at harvest. SOC was increased in the tillage treatments in 2000 by 35% but only with 18% in 2001 suggesting reduced carbon accumulation in the absence of organic and mineral restitution. Ploughing in maize straw under conditions of N deficiency led to a drastic decrease in SOC due microbial priming effect that, was not observed when ploughing in sheep dung. In no-till system, losses, organic amendment N concentration and the soil N status determined the impact on SOC and crop productivity. The negative effect on SOC in the tillage treatment with maize straw (4.1 g kg(-1)) was less when maize straw was combined with urea (6.2 g kg(-1)). It is concluded that in semi-arid West Africa, without both organic resource and N inputs, soil organic matter pays for crop N nutrition. Increasing SOC accumulation while improving crop yield may be conflicting under low-input agricultural systems in semi-arid West Africa. Therefore, optimum soil organic carbon and crop performance results from a judicious combination of organic resources and inorganic N mediated by microbial activity. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available