4.8 Article

CIPK9:: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis

Journal

CELL RESEARCH
Volume 17, Issue 5, Pages 411-421

Publisher

SPRINGERNATURE
DOI: 10.1038/cr.2007.39

Keywords

calcium; calcineurin-B like protein; protein kinase; potassium nutrition; signal transduction

Categories

Ask authors/readers for more resources

Potassium is one of the major macro-nutrients essential for a number of cellular processes in plants. Low potassium level in the soil represents a limiting factor for crop production. Recent studies have identified potassium transporters that are involved in potassium acquisition, and some of them are critical for potassium nutrition under low potassium conditions. However, little is understood on the molecular components involved in low potassium signaling and responses. We report here the identification of a calcineurin B-like protein-interacting protein kinase (CIPK9) as a critical regulator of low potassium response in Arabidopsis. The CIPK9 gene was responsive to abiotic stress conditions, and its transcript was inducible in both roots and shoots by potassium deprivation. Disruption of CIPK9 function rendered the mutant plants hypersensitive to low potassium media. Further analysis indicated that K+ uptake and content were not affected in the mutant plants, implying CIPK9 in the regulation of potassium utilization or sensing processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available