4.7 Article

Folic acid-conjugated protein cages of a plant virus: A novel delivery platform for doxorubicin

Journal

BIOCONJUGATE CHEMISTRY
Volume 18, Issue 3, Pages 836-843

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bc060361p

Keywords

-

Ask authors/readers for more resources

The protein cage of a plant virus may provide a template for monodispersed nanosized systems for drug delivery. Using the Hibiscus chlorotic ringspot virus (HCRSV) as a model plant virus, we have prepared nanosized protein cages (30 nm) capable of encapsulating the anticancer drug, doxorubicin. The technique utilized the simultaneous encapsulation of a polyprotic acid of mw 200 kDa to produce an encapsulation efficiency for doxorubicin of about 7.5%. Folic acid was conjugated onto the capsids to impart cancer-targeting capability. The resultant nanosized systems improved the uptake and cytotoxicity of doxorubicin in the ovarian cancer cells, OVCAR-3, with statistical significance. Plant virus capsids may therefore provide viable templates for targeted drug delivery in cancer chemotherapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available