4.4 Article

Sedimentology of acid saline lakes in southern Western Australia: Newly described processes and products of an extreme environment

Journal

JOURNAL OF SEDIMENTARY RESEARCH
Volume 77, Issue 5-6, Pages 366-388

Publisher

SEPM-SOC SEDIMENTARY GEOLOGY
DOI: 10.2110/jsr.2007.038

Keywords

-

Categories

Ask authors/readers for more resources

Naturally acid saline systems with pH values between 1.7 and 4 are common on the Yilgarn Craton of southern Western Australia. A combination of physical and chemical processes here yield a previously undescribed type of modern sedimentary environment. Flooding, evapoconcentration, desiccation, and eolian transport at the surface, as well as influx of acid saline groundwaters, strongly influence these lakes. Halite, gypsum, kaolinite, and iron oxides precipitate from acid hypersaline lake waters. Shallow acid saline groundwaters affect the sediments of the lakes and associated mudflats, sandflats, channels, and dunes by precipitating early diagenetic halite, gypsum, iron oxides, clays, jarosite, and alunite. These modern environments would likely yield a rock record composed mostly of bedded red siliciclastic and reworked gypsum sand, alternating with less common beds of bottom-growth gypsum and halite, with alteration by early diagenctic features diagnostic of acid saline waters. This documentation of sedimentary processes and products of modern acid saline environments is an addition to the comparative sedimentology knowledge base and an expansion of the traditional models for classifying brines. Implications include better interpretations of terrestrial redbeds and lithified martian strata, improved acid remediation methods, new models for the formation and occlusion of pores, and the new setting for finding previously undescribed extremophiles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available