4.7 Article

Estimating stellar parameters from spectra using a hierarchical Bayesian approach

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 377, Issue 1, Pages 120-132

Publisher

WILEY-BLACKWELL PUBLISHING, INC
DOI: 10.1111/j.1365-2966.2007.11508.x

Keywords

methods : data analysis; methods : statistical; techniques : spectroscopic; stars : fundamental parameters; stars : individual : Alpha Boo

Ask authors/readers for more resources

A method is developed for fitting theoretically predicted astronomical spectra to an observed spectrum. Using a hierarchical Bayesian principle, the method takes both systematic and statistical measurement errors into account, which has not been done before in the astronomical literature. The goal is to estimate fundamental stellar parameters and their associated uncertainties. The non-availability of a convenient deterministic relation between stellar parameters and the observed spectrum, combined with the computational complexities this entails, necessitates the curtailment of the continuous Bayesian model to a reduced model based on a grid of synthetic spectra. A criterion for model selection based on the so-called predictive squared error loss function is proposed, together with a measure for the goodness-of-fit between observed and synthetic spectra. The proposed method is applied to the infrared 2.38-2.60 mu m Infrared Space Observatory (ISO)-Short Wavelength Spectrometer (SWS) data of the star alpha Bootis, yielding estimates for the stellar parameters: effective temperature T(eff) = 4230 +/- 83 K, gravity log g = 1.50 +/- 0.15 dex and metallicity [Fe/H] = - 0.30 +/- 0.21 dex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available