4.2 Article

Molecular insights into stress erythropoiesis

Journal

CURRENT OPINION IN HEMATOLOGY
Volume 14, Issue 3, Pages 215-224

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/MOH.0b013e3280de2bf1

Keywords

apoptosis; death receptors; stress erythropoiesis

Categories

Funding

  1. NHLBI NIH HHS [R01 HL084168-01] Funding Source: Medline

Ask authors/readers for more resources

Purpose of review In addition to its essential role in baseline erythropoiesis, the hormone erythropoietin drives the erythropoietic response to hypoxic stress. A mechanistic understanding of stress erythropoiesis would benefit multiple clinical settings, and may aid in understanding leukemogenesis. Recent findings The spectrum of progenitors targeted by the erythropoietin receptor is broader during stress than during baseline erythropoiesis. Further, the requirement for erythropoietin receptor signaling is more stringent during stress. However, erythropoietin receptor signaling has been mostly studied in vitro, where it is difficult to relate signaling events to stress-dependent changes in erythroid homeostasis. Here we review advances in flow cytometry that allow the identification and study of murine erythroid precursors in hematopoietic tissue as they are responding to stress in vivo. The death receptor Fas and its ligand, FasL, are coexpressed by early splenic erythroblasts, suppressing erythroblast survival and erythropoietic rate. During stress, erythropoietin receptor signaling downregulates erythroblast Fas and FasL, consequently increasing erythropoietic rate. Summary Erythropoietic rate is regulated at least in part through the erythropoietin receptor-mediated survival of splenic early erythroblasts. Future research will delineate how multiple antiapoptotic pathways, potentially activated by the erythropoietin receptor, interact to produce the remarkable dynamic range of erythropoiesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available