4.5 Article

Computer simulation of buckling behavior of double-walled carbon nanotubes with abnormal interlayer distances

Journal

COMPUTATIONAL MATERIALS SCIENCE
Volume 39, Issue 3, Pages 664-672

Publisher

ELSEVIER
DOI: 10.1016/j.commatsci.2006.08.016

Keywords

double-walled carbon nanotube; molecular dynamics; buckling behavior

Ask authors/readers for more resources

Several double-walled carbon nanotubes (DWCNTs) composed of different internal and external carbon nanotubes (CNTs) are presented and simulated by the molecular dynamics (MD) method. Interlayer distances of these novel DWCNTs are different with those of normal DWCNTs, i.e. 0.34 nm. Their initial equilibrium configurations and buckling behaviors under axial compression are simulated to examine the influence of the van der Waals force on the mechanical properties of DWCNTs. The interaction of atoms in each tube is described by the Tersoff-Brenner potential, while the van der Waals force between inner and outer walls is described by the Lennard-Jones potential. Numerical results show that the different van der Waals force coming from different interlayer spacing results in different critical buckling strain of DWCNTs under axial compression. These new DWCNTs exhibit better compressive stability as compared with the normal DWCNT. (C) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available