4.7 Article

Abiotic degradation of triphenylborane pyridine (TPBP) antifouling agent in water

Journal

CHEMOSPHERE
Volume 67, Issue 10, Pages 1904-1910

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2006.12.007

Keywords

biocide; buffer solution; environmental fate; hydrolysis; photodegradation; seawater; UV-A

Ask authors/readers for more resources

The abiotic degradation of the new antifouling agent, triphenylborane pyridine (TPBP), was investigated in buffer solutions having different pH values (pH 5, 7, and 9), and in artificial and natural seawater to estimate environmental fate of TP13P. The TPBP in these waters was decomposed by a seven-day hydrolysis process at 50 degrees C both in the dark and a photolysis process under UV-A irradiation using a high-pressure mercury lamp for periods up to 24 h. TPBP hydrolysis was significantly enhanced by acidic pH solutions. The photolysis rate of TPBP was higher in acidic pH solutions than in neutral or basic pH solutions, and was highest in natural seawater, which could have contained naturally dissolved organic matter. Two degradation products, phenol and an unknown substance (Peak #1), were observed during the hydrolysis and photolysis studies of TPBP. The concentration of these substances after a one-day photolysis treatment was higher than after a seven-day hydrolysis treatment. The degradation rate of TPBP in the five test water samples was related to the simultaneous photolysis formation of phenol and Peak #1. However, the degradation rate of TPBP was not related to the formation of the hydrolysis products. Therefore, it is suggested that photodegradation of TPBP follows a different pathway to the hydrolysis degradation of TPBP. Our results indicate the chemical and photochemical reaction of TPBP in water occurs in natural aquatic environments. (c) 2006 Elsevier Ltd. Ali rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available