4.6 Article

Effects of hydrophobic drug-polyesteric core interactions on drug loading and release properties of poly(ethylene glycol)-polyester-poly(ethylene glycol) triblock core-shell nanoparticles

Journal

NANOTECHNOLOGY
Volume 18, Issue 17, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/18/17/175602

Keywords

-

Ask authors/readers for more resources

BAB amphiphilic triblock copolymers consisting of poly(ethylene glycol) (B) (PEG) as the hydrophilic segment and different polyesters (A) as the hydrophobic block were prepared by a polycondensation reaction as efficient model core-shell nanoparticles to assay the effect of interactions between the hydrophobic drug and the polyesteric core in terms of drug loading content and release profile. PEG-poly(hexylene adipate)-PEG (PEG-PHA-PEG) and PEG-poly(butylene adipate)-PEG (PEG-PBA-PEG) to PEG-poly(ethylene adipate)-PEG (PEG-PEA-PEG) core-shell type nanoparticles entrapping quercetin (an anticarcinogenic, allergy inhibitor and antibacterial agent), were prepared by a nanoprecipitation method and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD) techniques. It was found that the obtained nanoparticles showed a smooth surface and spherical shape with controllable sizes in the range of 64-74 nm, while drug loading varied from 7.24% to 19% depending on the copolymer composition and the preparation conditions. The in vitro release behaviour exhibited a sustained release and was affected by the polymer-drug interactions. UV studies revealed the presence of hydrogen bonding as the main existing interaction between quercetin and polyesters in the nanosphere cores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available