4.6 Article

Fatty acid 2-hydroxylase, encoded by FA2H, accounts for differentiation-associated increase in 2-OH Ceramides during keratinocyte differentiation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 18, Pages 13211-13219

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M611562200

Keywords

-

Funding

  1. NCRR NIH HHS [RR17677] Funding Source: Medline
  2. NIAMS NIH HHS [AR19098, AR050629, AR39448] Funding Source: Medline

Ask authors/readers for more resources

Ceramides in mammalian stratum corneum comprise a heterogeneous mixture of molecular species that subserve the epidermal permeability barrier, an essential function for survival in a terrestrial environment. In addition to a variation of sphingol species, hydroxylation of the amide-linked fatty acids contributes to the diversity of epidermal ceramides. Fatty acid 2-hydroxylase, encoded by the gene FA2H, the mammalian homologue of FAH1 in yeast, catalyzes the synthesis of 2-hydroxy fatty acid-containing sphingolipids. We assessed here whether FA2H accounts for 2-hydroxyceramide/2-hydroxyglucosylceramide synthesis in epidermis. Reverse transcription-PCR and Western immunoblots demonstrated that FA2H is expressed in cultured human keratinocytes and human epidermis, with FA2H expression and fatty acid 2-hydroxylase activity increased with differentiation. FA2H-siRNA suppressed 2-hydroxylase activity and decreased 2-hydroxyceramide/2-hydroxyglucosylceramide levels, demonstrating that FA2H accounts for synthesis of these sphingolipids in keratinocytes. Whereas FA2H expression and 2-hydroxy free fatty acid production increased early in keratinocyte differentiation, production of 2-hydroxyceramides/2-hydroxyglucosylceramides with longer chain amide-linked fatty acids (>= C24) increased later. Keratinocytes transduced with FA2H-siRNA contained abnormal epidermal lamellar bodies and did not form the normal extracellular lamellar membranes required for the epidermal permeability barrier. These results reveal that 1) differentiation-dependent up-regulation of ceramide synthesis and fatty acid elongation is accompanied by up-regulation of FA2H; 2) 2-hydroxylation of fatty acid by FA2H occurs prior to generation of ceramides/glucosylceramides; and 3) 2-hydroxyceramides/2-hydroxyglucosylceramides are required for epidermal lamellar membrane formation. Thus, late differentiation-linked increases in FA2H expression are essential for epidermal permeability barrier homeostasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available