4.8 Article

Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high temperatures

Journal

PHYSICAL REVIEW LETTERS
Volume 98, Issue 18, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.98.185501

Keywords

-

Ask authors/readers for more resources

We report exceptional ductile behavior in individual double-walled and triple-walled carbon nanotubes at temperatures above 2000 degrees C, with tensile elongation of 190% and diameter reduction of 90%, during in situ tensile-loading experiments conducted inside a high-resolution transmission electron microscope. Concurrent atomic-scale microstructure observations reveal that the superelongation is attributed to a high temperature creep deformation mechanism mediated by atom or vacancy diffusion, dislocation climb, and kink motion at high temperatures. The superelongation in double-walled and triple-walled carbon nanotubes, the creep deformation mechanism, and dislocation climb in carbon nanotubes are reported here for the first time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available