4.7 Article

Synthesis and evaluation of iron-containing ordered mesoporous carbon (FeOMC) for arsenic adsorption

Journal

MICROPOROUS AND MESOPOROUS MATERIALS
Volume 102, Issue 1-3, Pages 265-273

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.micromeso.2007.01.011

Keywords

ordered mesoporous carbon (OMC); iron (hydro)oxides; FeOMC; arsenic adsorption; nanotechnology

Ask authors/readers for more resources

Recent progress in nanotechnology has resulted in numerous nanoscale structures and devices with exceptional chemical, physical and biological properties and functions. in this study, we developed an ordered nano-structured adsorbent, iron-containing ordered mesoporous carbon (FeOMC), for arsenic adsorption from water. FeOMC preparation involved in synthesis of ordered silica template SBA-15, in situ polymerization of mono acrylic acid (AA) in the silica template followed by carbonization and template removal to obtain ordered mesoporous carbon (OMC), and iron impregnation. Sample characterizations by transmission electron microcopy, Xray diffraction, and nitrogen adsorption indicated that the prepared OMC and FeOMC had an ordered mesoporous structure with high specific surface area of 607 m(2)/g and 466 m(2)/g, respectively. Arsenic adsorption experiments showed that the maximum arsenic adsorption was primarily controlled by the amount of iron impregnated, and the molar ratio of iron and the maximum amount of arsenate adsorption was 5.53-7.97. The optimal pH values for adsorption depended on arsenic species: at an initial concentration of 9.98 mg/ L arsenic, the optimal pH range was 3.0-7.0 for arsenate removal and 6.0-9.5 for arsenite. The rate of arsenic removal by FeOMC was high, suggesting that it could be potentially applied in point-of-use systems where fast adsorption kinetics is needed. (C) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available