4.7 Article

Ultrafast repair of irradiated DNA:: Nonadiabatic ab initio simulations of the guanine-cytosine photocycle

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 126, Issue 17, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2728897

Keywords

-

Ask authors/readers for more resources

Nonadiabatic first-principles molecular dynamics simulations have been performed of the photoexcited Watson-Crick guanine-cytosine (GC) DNA base pair in the gas phase and in aqueous solution. An excited state coupled proton-electron transfer (CPET) from G to C along the central hydrogen bond is observed upon excitation of the pi pi(*) state initially localized on G. In the resulting charge transfer state a conical intersection between the excited state and the ground state is easily accessible. Therefore radiationless decay is fast, of the order of 100 fs, followed by a rapid CPET back reaction retrieving the initial Watson-Crick structure. A detailed analysis of the mechanism of nonradiative decay suggests a biexponential behavior in which out-of-plane motion plays a special role for the longer decay component. (C) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available