4.7 Article

Structure and internal dynamics of a side chain liquid crystalline polymer in various phases by molecular dynamics simulations: A step towards coarse graining

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 126, Issue 17, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2712438

Keywords

-

Ask authors/readers for more resources

Side chain liquid crystalline polymer with relatively long spacer was modeled on a semiatomistic level and studied in different liquid crystalline phases with the aid of molecular dynamics simulations. Well equilibrated isotropic, polydomain smectic and monodomain smectic phases were studied for their structural and dynamic properties. Particular emphasis was given to the analysis on a coarse-grained level, where backbones, side chains, and mesogens were considered in terms of their equivalent ellipsoids. The authors found that the liquid crystalline phase had a minor influence on the metrics of these objects but affected essentially their translational and orientational order. In the monodomain smectic phase, mesogens, backbones, and side chains are confined spatially. Their diffusion and shape dynamics are frozen along the mesogen director (the one-dimensional solidification) and the reorientation times increase by one to one-and-half orders of magnitude. In this phase, besides obvious orientational order of mesogens and side chains, a stable detectable order of the backbones was also observed. The backbone director is confined in the plane perpendicular to the mesogen director and constantly changes its orientation within this plane. The backbone diffusion in these planes is of the same range as in the polydomain smectic phase at the same temperature. A detailed analysis of the process of field-induced growth of the smectic phase was performed. The study revealed properties of liquid crystalline polymers that may enable their future fully coarse-grained modeling (C) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available