4.8 Article

Drift and breakup of spiral waves in reaction-diffusion-mechanics systems

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0701895104

Keywords

electromechanics; nonlinear dynamics; stretch-activated channels; cardiac arrhythmias

Ask authors/readers for more resources

Rotating spiral waves organize excitation in various biological, physical, and chemical systems. They underpin a variety of important phenomena, such as cardiac arrhythmias, morphogenesis processes, and spatial patterns in chemical reactions. Important insights into spiral wave dynamics have been obtained from theoretical studies of the reaction-diffusion (RD) partial differential equations. However, most of these studies have ignored the fact that spiral wave rotation is often accompanied by substantial deformations of the medium. Here, we show that joint consideration of the RD equations with the equations of continuum mechanics for tissue deformations (RD-mechanics systems), yield important effects on spiral wave dynamics. We show that deformation can induce the breakup of spiral waves into complex spatiotemporal patterns. We also show that mechanics leads to spiral wave drift throughout the medium approaching dynamical attractors, which are determined by the parameters of the model and the size of the medium. We study mechanisms of these effects and discuss their applicability to the theory of cardiac arrhythmias. Overall, we demonstrate the importance of RD-mechanics systems for mathematics applied to life sciences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available