4.8 Article

Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0701732104

Keywords

photoisomerization; rhodopsin; vision

Ask authors/readers for more resources

The primary event that initiates vision is the photoinduced isomerization of retinal in the visual pigment rhodopsin (Rh). Here, we use a scaled quantum mechanics/molecular mechanics potential that reproduces the isomerization path determined with multiconfigurational perturbation theory to follow the excited-state evolution of bovine Rh. The analysis of a 140-fs trajectory provides a description of the electronic and geometrical changes that prepare the system for decay to the ground state. The data uncover a complex change of the retinal backbone that, at approximate to 60-fs delay, initiates a space saving asynchronous bicycle-pedal or crankshaft motion, leading to a conical intersection on a 110-fs time scale. It is shown that the twisted structure achieved at decay features a momentum that provides a natural route toward the photoRh structure recently resolved by using femtosecond-stimulated Raman spectroscopy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available