4.7 Article

Interplay between laminar specificity and activity-dependent mechanisms of thalamocortical axon branching

Journal

JOURNAL OF NEUROSCIENCE
Volume 27, Issue 19, Pages 5215-5223

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4685-06.2007

Keywords

activity; axon guidance; cerebral cortex; lamina; thalamus; tissue culture

Categories

Ask authors/readers for more resources

Target and activity-dependent mechanisms of axonal branching were studied in the thalamocortical (TC) projection using organotypic cocultures of the thalamus and cortex. TC axons were labeled with enhanced yellow fluorescent protein (EYFP) by a single-cell electroporation method and observed over time by confocal microscopy. Changes in the firing activity of cocultures grown on multielectrode dishes were also monitored over time. EYFP-labeled TC axons exhibited more branch formation in and around layer 4 of the cortical explant during the second week in vitro, when spontaneous firing activity increased in both thalamic and cortical cells. Time-lapse imaging further demonstrated that branching patterns were generated dynamically by addition and elimination with a bias toward branch accumulation in the target layer. To examine the relationship between neural activity and TC branch formation, the dynamics of axonal branching was analyzed under various pharmacological treatments. Chronic blockade of firing or synaptic activity reduced the remodeling process, in particular, branch addition in the target layer. However, extension of branches was not affected by this treatment. Together, these findings suggest that neural activity can modify the molecular mechanisms that regulate lamina-specific TC axon branching.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available