4.7 Article

Virgo cluster early-type dwarf galaxies with the Sloan Digital Sky Survey. III. Subpopulations: Distributions, shapes, origins

Journal

ASTROPHYSICAL JOURNAL
Volume 660, Issue 2, Pages 1186-1197

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/513090

Keywords

galaxies : clusters : individual (Virgo); galaxies : dwarf; galaxies : evolution; galaxies : fundamental parameters; galaxies : statistics; galaxies : structure

Ask authors/readers for more resources

From a quantitative analysis of 413 Virgo Cluster early-type dwarf galaxies (dEs) with SDSS imaging data, we find that the dE class can be divided into multiple subpopulations that differ significantly in their morphology and clustering properties. Three dE subclasses are shaped like thick disks and show no central clustering: (1) dEs with disk features like spiral arms or bars, (2) dEs with central star formation, and (3) ordinary, bright dEs that have no or only a weak nucleus. These populations probably formed from infalling progenitor galaxies. In contrast, ordinary nucleated dEs follow the picture of classical dwarf elliptical galaxies in that they are spheroidal objects and are centrally clustered like E and S0 galaxies, indicating that they have resided in the cluster for a long time or were formed along with it. These results define a morphology-density relation within the dE class. We find that the difference in the clustering properties of nucleated dEs and dEs with no or only a weak nucleus is not caused by selection biases, as opposed to previously reported suggestions. The correlation between surface brightness and observed axial ratio favors oblate shapes for all subclasses, but our derivation of intrinsic axial ratios indicates the presence of at least some triaxiality. We discuss possible interrelations and formation mechanisms (ram pressure stripping, tidally induced star formation, harassment) of these dE subpopulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available