4.6 Article

Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 19, Pages 14316-14327

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M700912200

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM065546, GM065546, R01 GM061068, R01 GM061068-07, R01 GM065546-04, GM061068] Funding Source: Medline

Ask authors/readers for more resources

Proline dehydrogenase (PRODH) and Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyze the two-step oxidation of proline to glutamate. They are distinct monofunctional enzymes in all eukaryotes and some bacteria but are fused into bifunctional enzymes known as proline utilization A (PutA) in other bacteria. Here we report the first structure and biochemical data for a monofunctional PRODH. The 2.0-angstrom resolution structure of Thermus thermophilus PRODH reveals a distorted (beta alpha)(8) barrel catalytic core domain and a hydrophobic alpha-helical domain located above the carboxyl-terminal ends of the strands of the barrel. Although the catalytic core is similar to that of the PutA PRODH domain, the FAD conformation of T. thermophilus PRODH is remarkably different and likely reflects unique requirements for membrane association and communication with P5CDH. Also, the FAD of T. thermophilus PRODH is highly solvent-exposed compared with PutA due to a 4-angstrom shift of helix 8. Structure-based sequence analysis of the PutA/PRODH family led us to identify nine conserved motifs involved in cofactor and substrate recognition. Biochemical studies show that the midpoint potential of the FAD is -75 mV and the kinetic parameters for proline are K-m =27 mM and k(cat) = 13 s(-1). 3,4-Dehydro-L-proline was found to be an efficient substrate, and L-tetrahydro-2-furoic acid is a competitive inhibitor (K-I = 1.0 mM). Finally, we demonstrate that T. thermophilus PRODH reacts with O-2 producing superoxide. This is significant because superoxide production underlies the role of human PRODH in p53-mediated apoptosis, implying commonalities between eukaryotic and bacterial monofunctional PRODHs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available