4.5 Article

Multi-modal characterisation of the neocortical clip model of focal cerebral ischaemia by MRI, behaviour and immunohistochemistry

Journal

BRAIN RESEARCH
Volume 1145, Issue -, Pages 177-189

Publisher

ELSEVIER
DOI: 10.1016/j.brainres.2007.01.111

Keywords

animal model; behaviour; cerebral ischaemia.; immunohistochemistry; MRI; stroke

Categories

Funding

  1. MRC [G9900989] Funding Source: UKRI
  2. Medical Research Council [G9900989] Funding Source: researchfish
  3. Medical Research Council [G9900989] Funding Source: Medline

Ask authors/readers for more resources

The neocortical clip model of focal cerebral ischaemia has previously been used with success in neuroprotection studies. To further improve its translational qualities, we have characterised this model using a combination of serial Magnetic Resonance Imaging (MRI), neurological assessment, the bilateral asymmetry test (BAT) and immunohistochemistry. The right MCA was occluded in spontaneously hypertensive rats for 0, 60 and 120 min. MRI was performed pre-surgery, 1, 3 and 7 days post-surgery. Behavioural assessment was performed 2 days before and 3 and 7 days post-surgery whilst neurological deficits were monitored daily. Neuroimaging results showed that 0 min of MCA occlusion did not produce a lesion, whereas occlusion for 60 min produced a lesion that remained stable over time. Occlusion for 120 min caused a more severe lesion 1 day post-surgery, but decreased by 7 days. Behaviour, neurological scores and histological lesion volumes correlated strongly with MRI lesion volume. Immunohistochemistry revealed neuronal loss, astrogliosis and macrophage infiltration in lesioned cortices. The neocortical clip model produced ischaemic lesions that are restricted to cortical territories of the MCA. The duration of occlusion dictates lesion severity which may prove useful for probing therapeutic interventions at different stages of stroke progression. The correlation of MRI with two different behavioural measures and post-mortem histology strengthens the basis for MRI providing an in vivo surrogate marker for structural and behavioural deficits caused by a cortical stroke. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available