4.6 Article

Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy

Journal

APPLIED PHYSICS LETTERS
Volume 90, Issue 20, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2739410

Keywords

-

Ask authors/readers for more resources

The authors have performed distortionless atom imaging and force mapping experiments, under a large thermal drift condition at room temperature (RT), using frequency modulation atomic force microscopy (FM-AFM) that had been done previously only at low temperature. In the authors' experimental scheme, three-dimensional position feedback with atom tracking detects the thermal drift velocity that is constant for a period of time at RT. The detected velocity is then used as the model for implementing the feedforward in order to compensate for the thermal drift. This technique can be expected to be used for precise positioning of the tip-sample in atom manipulation experiments using the FM-AFM at RT. (C) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available