4.8 Article

Low concentrations of surfactants enhance siderophore-promoted dissolution of goethite

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 41, Issue 10, Pages 3633-3638

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es062897r

Keywords

-

Ask authors/readers for more resources

Surface-active agents (surfactants) are released by many soil bacteria and plant roots and are also important as environmental contaminants. Their presence at interfaces could influence important biogeochemical processes in soils such as ligand-controlled dissolution, an important process in biological iron acquisition. To investigate their potential influence on ligand-controlled dissolution of iron oxides, we studied the dissolution kinetics of goethite (alpha-FeOOH) at pH 6 in the presence of the bacterial siderophore desferrioxamine B (DFOB) and the anionic surfactant sodium dodecyl sulfate (SDS). The adsorption isotherm of SDS on goethite showed an increase in the slope at concentrations ranging between 300 and 400 mu M SDS in solution. This increase in slope suggested the onset of admicelle formation. Adsorption of DFOB onto goethite increased strongly with increasing concentrations of adsorbed SDS. Small concentrations of SDS (5 mu M) resulted in a 3-fold acceleration of DFOB-controlled goethite dissolution in the presence of 80 mu M DFOB, compared to the suspensions without SDS. The effects of SDS on the goethite dissolution rates were less pronounced at higher SDS concentrations, and became negligible above 600 mu M total SDS. The dissolution rates of goethite were not proportional to the adsorbed DFOB concentrations, as would be expected for ligand-controlled dissolution. We speculate that increasing concentrations of adsorbed SDS result in a change in DFOB surface speciation from inner-sphere to outer-sphere complexes and, consequently, the ligand-controlled dissolution rates are not linearly related to the adsorbed DFOB concentration. Our results provide the first evidence for an important role of biosurfactants in biological iron acquisition involving siderophores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available