4.8 Article

Laccase-mediated michael addition of 15N-sulfapyridine to a model humic constituent

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 41, Issue 10, Pages 3593-3600

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es0617338

Keywords

-

Ask authors/readers for more resources

Chemical incorporation of sulfonamide antimicrobials into natural organic matter may represent an important process influencing the fate of these synthetic, primarily agents in soil and sediment environments. We previously demonstrated that a fungal peroxidase mediates covalent coupling of sulfonamide antimicrobials to model humic constituents; reactions with the 2,6-dimethoxyphenol syringic acid produced Schiff bases (Bialk et al. Environ. Sci. Technol. 2005, 39, 4436-4473). Here, we show that fungal laccase-mediated reaction of sulfapyridine with the ortho-dihydroxyphenol protocatechuic acid yields a Michael adduct. We synthesized N-15-enriched sulfapyridine to facilitate determination of the covalent linkage(s) formed between sulfapyridine and protocatechuic acid by NMR spectroscopy. H-1-N-15 heteronuclear multiple bond correlation experiments and tandem mass spectrometry demonstrated that the sulfapyridine anilinic nitrogen engaged in a Michael addition reaction to oxidized protocatechuic acid to form an anilinoquinone. Michael adducts are more stable than the previously reported imine linkages between sulfonamides and 2,6-dimethoxyphenols. Michael addition to quinone-like structures in soil organic matter is expected to diminish the mobility and biological activity of sulfonamide antimicrobials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available