4.6 Article

Silicon nanoparticles:: Absorption, emission, and the nature of the electronic bandgap

Journal

JOURNAL OF APPLIED PHYSICS
Volume 101, Issue 10, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2720095

Keywords

-

Ask authors/readers for more resources

Silicon nanoparticles synthesized in the gas phase are studied. From time-resolved photoluminescence measurements we determine, quantitatively, the size-dependence of the oscillator strength of the nanoparticles. We investigate experimentally the absorption and photoluminescence emission of nanoparticle ensembles with a broad size distribution. Using a model which accounts for size-effects in both oscillator strength and quantum-confinement, we are able to calculate absorption and emission spectra of ensemble samples. From these results we have determined, whether silicon nanoparticles should be regarded as indirect or direct semiconductors. Moreover, we systematically study the influence of the particle size-distribution on the optical spectra. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available