4.8 Article

Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive

Journal

CHEMISTRY OF MATERIALS
Volume 19, Issue 10, Pages 2595-2602

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm070485r

Keywords

-

Ask authors/readers for more resources

Comparison is made between the use of either a carbon powder or a polymer additive to the precursors in the synthesis of LiFePO4 from the Fe(III) compound FePO4(H2O)(2) and Li2CO3. The evolution of the structural properties and phase purity with temperature and time have been monitored at all length scales by X-ray diffraction, Fourier transformed infrared spectroscopy, and magnetic susceptibility. The reactor temperature was decreased to 300 degrees C to investigate the early stages of the reaction. Formation of crystalline LiFePO4 begins in the range 300-400 degrees C only if the polymer is used as the carbonaceous additive. This LiFePO4 formation is made possible by the reduction of Fe(III) species by gases such as H-2 or gaseous hydrocarbons evolved during the calcination of the polymer. Moreover, decomposition of the polymer results in a carbonaceous deposit on the surface of the LiFePO4 particles. An Li3Fe2(PO4)(3) impurity found after sintering at 400 degrees C for 4 h was greatly reduced after sintering at 400 degrees C for 24 h, and phase-pure LiFePO4 was attained at 700 degrees C. Where the solid carbon powder was used as the reducing agent, no Fe(II) species could be detected after sintering at 400 degrees C. Carbothermal reduction of Fe(III) is ruled out in this temperature range.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available