3.9 Article

Effects of volcanic and hydrologic processes on forest vegetation: Chaiten Volcano, Chile

Journal

ANDEAN GEOLOGY
Volume 40, Issue 2, Pages 359-391

Publisher

SERVICIO NACIONAL GEOLOGIA MINERVA
DOI: 10.5027/andgeoV40n2-a10

Keywords

Environmental impacts; Vegetation response; Natural resource impacts; Ecological disturbance; Landscape ecology

Categories

Funding

  1. United States Forest Service International Programs
  2. Pacific Northwest Research Station
  3. National Science Foundation [NSF 0917697, NSF 0823380]
  4. Direct For Biological Sciences [1257360] Funding Source: National Science Foundation

Ask authors/readers for more resources

The 2008-2009 eruption of Chaiten Volcano (Chile) involved a variety of volcanic and associated hydrologic processes that damaged nearby forests. These processes included coarse (gravel) and fine (silt to sand) tephra fall, a laterally directed blast, fluvial deposition of remobilized tephra, a variety of low-temperature mass-movement processes, and a pyroclastic flow. Each of these geophysical processes constitutes a type of ecosystem disturbance which involves a distinctive suite of disturbance mechanisms, namely burial by tephra and sediment, heating, abrasion, impact force, and canopy loading (accumulation of tephra in tree crowns). Each process affected specific areas, and created patches and disturbance gradients in the forest landscape. Coarse tephra ('gravel rain', >5 cm depth) abraded foliage from tree canopies over an area of approximately 50 km(2) north-northeast of the vent. Fine tephra (>10 cm depth) accumulated in tree crowns and led to breakage of branches in old forest and bowing of flexible, young trees over an area of about 480 km(2). A directed blast down the north flank of the volcano damaged forest over an area of 4 km(2). This blast zone included an area of tree removal near the crater rim, toppled forest farther down the slope, and standing, scorched forest around the blast perimeter. Fluvial deposition of >100 cm of remobilized tephra, beginning about 10 days after initiation of the eruption, buried floodplain forest in distinct, elongate streamside patches covering 5 km(2) of the lower 19 km of the Rayas River and several km(2) of the lower Chaiten River. Across this array of disturbance processes the fate of affected trees varied from complete mortality in the tree removal and pyroclastic flow areas, to no mortality in areas of thin tephra fall deposits. Tree damage included defoliation, loss of branches, snapping of tree trunks, abrasion of bark and ephiphytes, and uprooting. Damaged trees sprouted from epicormic buds located in trunks and branches, but sprouting varied over time among disturbance mechanisms and species. Although some effects of the Chaiten eruption are very similar to those from the 1980 eruption of Mount St. Helens (USA), interactions between biota and geophysical processes at Chaiten produced some unique effects. Examination of vegetation response helps interpret geophysical processes, and disturbance mechanisms influence early stages of biotic response to an eruption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available