4.8 Article

Multicolor quantum dot encoding for polymeric particle-based optical ion sensors

Journal

ANALYTICAL CHEMISTRY
Volume 79, Issue 10, Pages 3716-3723

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac0701233

Keywords

-

Ask authors/readers for more resources

Multicolor quantum dot-encoded polymeric microspheres are prepared with controllable and uniform doping levels that function as chemical sensors on the basis of bulk optode theory. TOP/TOPO-capped CdSe quantum dots and CdTe quantum dots capped with CdS (lambda(em) = 610 and 700 nm, lambda(ex) = 510 nm) are blended with a THF solution of poly(methyl methacrylate-co-decyl methacrylate), poly(n-butylacrylate), or poly(vinyl chloride) plasticized with bis(2-ethylhexyl) sebacate without a need for ligand exchange. Polymeric microspheres are generated under mild, nonreactive conditions with a particle caster that breaks down a polymer stream containing the quantum dots into fine droplets by the vibration of a piezocrystal. The resulting microspheres exhibit uniform size and fluorescence emission intensities. Fluorescent bar codes are obtained by subsequent doping of two quantum dots with different colors and mass ratios into the microspheres. A linear relationship is found between the readout fluorescence ratio of the two types of nanocrystals and the mixing ratio. Quantum dot-encoded ion sensing optode microspheres are prepared by simultaneous doping of sodium ionophore X, chromoionophore II, a lipophilic tetraphenylborate cation exchanger, and TOPO-capped CdSe/CdS quantum dot as the fluorescent label. A net positive charge of the quantum dots is found to induce an anion-exchange effect on the sensor function, and therefore, an increased concentration of the lipophilic cation exchanger is required to achieve proper ion sensing properties. The modified quantum dot-labeled sodium sensing microspheres show satisfactory sodium response between 10(-4) and 0.1 M at pH 4.8, with excellent selectivity toward common interferences. The amount of the carried positive charges of the CdSe quantum dots is estimated as 2.8 mu mol/g of quantum dots used in this study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available