4.7 Article

Molecular recognition of DNA by rigid [n]-polynorbornane-derived bifunctional intercalators:: Synthesis and evaluation of their binding properties

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 50, Issue 10, Pages 2326-2340

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jm0613020

Keywords

-

Funding

  1. Wellcome Trust Funding Source: Medline

Ask authors/readers for more resources

We have exploited the concept of multivalency in the context of DNA recognition, using novel chemistry to synthesize a new type of bis-intercalator with unusual sequence-selectivity. Bis-intercalation has been observed previously, but design principles for de novo construction of such molecules are not known. Our compounds feature two aromatic moieties projecting from a rigid, polynorbornane-based scaffold. The length and character of the backbone as well as the identity of the intercalators were varied, resulting in mono- or divalent recognition of the double helix with varying affinity. Our lead compound proved to be a moderately sequence-selective bis-intercalator with an unwinding angle of 27 degrees and a binding constant of about 8 mu M. 9-Aminoacridine rings were preferred over acridine carboxamides or naphthalimides, and a rigid [3]-polynorbornane scaffold was superior to a [5]-polynorbornane. The flexibility of the linker connecting the rings to the scaffold, although less influential, could affect the strength and character of the DNA binding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available