4.4 Article

Mangiferin protects against 1-methyl-4-phenylpyridinium toxicity mediated by oxidative stress in N2A cells

Journal

NEUROSCIENCE LETTERS
Volume 418, Issue 2, Pages 159-164

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.neulet.2007.03.025

Keywords

oxidative stress; glutathione; mangiferin; N2A; MPP+

Categories

Ask authors/readers for more resources

1-Methyl-4-phenyl-pyridine ion (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces a Parkinsonian syndrome in humans and animals, a neurotoxic effect postulated to derive from oxidative stress. We report here the first investigation of MPP+-induced oxidative stress in the murine neuroblastoma cell line N2A. Significant cell death was observed following exposure to 0.25 mM MPP+. Markers of oxidative stress included decreased intracellular levels of GSH after 48 h of exposure (85% depletion) as well as an increase in GSSG. Expression of both superoxide dismutase I (sod]) and catalase (cat) mRNA was increased, as well the activity of catalase. These cellular effects were, at least partially, reversed by treatment with the natural polyphenol mangiferin. Administration of mangiferin protected N2A cells against MPP+-induced cytotoxicity, restored the GSH content (to 60% of control levels), and down-regulated both sod] and cat mRNA expression. Together, these results suggest that the protective effect of mangiferin in N2A cells is mediated by the quenching of reactive oxygen intermediates. Therefore, mangiferin could be a useful compound in therapies for degenerative diseases, including Parkinson's disease, in which oxidative stress plays a crucial role. (C) 2007 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available