4.7 Article

Hydrogen-bonded OH stretching modes of methanol clusters: A combined IR and Raman isotopomer study

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 126, Issue 19, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2732745

Keywords

-

Ask authors/readers for more resources

A comprehensive study of the OH and OD stretching fundamentals in clusters of methanol and its isotopomers CH3OD, CD3OH, and CD3OD provides detailed insights into the hydrogen-bond mediated coupling as a function of cluster size. The combination of infrared and Raman supersonic jet spectroscopy enables the observation and assignment of all hydrogen-bonded OH stretching modes of isolated methanol trimer and methanol tetramer. A consistent explanation for the spectral complexity observed more than a decade ago in methanol trimer in terms of low-frequency methyl umbrella motions is provided. Previous explanations based on cluster isomerism or anharmonic resonances are ruled out by dedicated jet experiments. The first experimental lower bound for concerted quadruple proton transfer in S-4 symmetric methanol tetramer is derived and compared with theoretical predictions. The observed isotope effects offer insights into the anharmonicity of the localized OH bond. The performance of harmonic B3LYP and MP2 calculations in predicting hydrogen-bond-induced spectral shifts and couplings is investigated. (C) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available