4.6 Article

Structure and dynamics of crystalline protein layers bound to supported lipid bilayers

Journal

LANGMUIR
Volume 23, Issue 11, Pages 6263-6269

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la063690e

Keywords

-

Ask authors/readers for more resources

We study proteins at the surface of bilayer membranes using streptavidin and avidin bound to biotinylated lipids in a supported lipid bilayer (SLB) at the solid-liquid interface. Using X-ray reflectivity and simultaneous fluorescence microscopy, we characterize the structure and fluidity of protein layers with varied relative surface coverages of crystalline and noncrystalline protein. With continuous bleaching, we measure a 10-15% decrease in the fluidity of the SLB after the full protein layer is formed. We propose that this reduction in lipid mobility is due to a small fraction (0.04) of immobilized lipids bound to the protein layer that create obstacles to membrane diffusion. Our X-ray reflectivity data show a 40 A thick layer of protein, and we resolve an 8 A layer separating the protein layer from the bilayer. We suggest that the separation provided by this water layer allows the underlying lipid bilayer to retain its fluidity and stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available