4.5 Article

Codeine presynaptically inhibits the glutamatergic synaptic transmission in the nucleus tractus solitarius of the guinea pig

Journal

NEUROSCIENCE
Volume 146, Issue 3, Pages 1425-1433

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2007.02.052

Keywords

EPSC; second-order NTS neuron; codeine; 4-AP

Categories

Ask authors/readers for more resources

Although codeine is the most prominent and centrally acting antitussive agent, the precise sites and mode of its action have not been fully understood yet. In the present study, we examined the effects of codeine on synaptic transmission in second-order neurons of the nucleus tractus solitarius (NTS), which is the first central relay site receiving tussigenic afferent fibers, by using whole-cell patch-clamp recordings in guinea-pig brainstem slices. Codeine (0.3-3 mM) significantly decreased the amplitude of excitatory postsynaptic currents (EPSCs) evoked by electrical stimulation of the tractus solitarius in a naloxone-reversible and concentration-dependent manner, but it had no effect on the decay time of evoked EPSCs (eEPSCs). The inhibition of eEPSCs was accompanied by an increased paired-pulse ratio of two consecutive eEPSCs. The inward current induced by application of AMPA remained unchanged after codeine application. A voltage-sensitive K+ channel blocker, 4-amino-pyridine (4-AP) attenuated the inhibitory effect of codeine on eEPSCs. These results suggest that codeine inhibits excitatory transmission from the primary afferent fibers to the second-order NTS neurons through the opioid receptors that activate the 4-AP sensitive K+ channels located at presynaptic terminals. (c) 2007 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available